
Cl
is

-., .. . .. . .

NATIONALADVISORYCOMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE 2658

LAMINAR BOUNDARY LAYER OVER FLAT PLATE

IN A FLOW HAVING CIRCULAR STREAMLINES

By Artur Mager and Arthur G. Hansen

Lewis Flight Propulsion Laboratory

Cleveland, Ohio

Washington

March 1952

. . . . . ... . ..— . . . . . . ,,. . . .. .. .. ..... .,. ..-_ . .. . . -=, = ~__,



TECHLIBRARY@W3, NM

11111111111
1P

00b5433
NATIOWW ADVISORY (!OMMTFI!EEFOR AEROI?A~ICS

TIZCIIl!lICJ!LNO’IT2658

LAMINAR BCXJJ!lDARYL&UZROVlZ13FIAI!PlAT13

lxJ CIRCULAR fmwsmms
U-I
4

By Artur Mager and Arthur G.

SUMMARY

IN A FLOW HNKll!TG

Hansen

The laminar-boundary-layerdevelopment over a semi-infinite flat
plate placed in a flow with ,concentriccirctir streamlines was investi-
gated with the limitation of small total turning of the main-stresm
flow. The shape of the velocity profiles in the direction of the main-
stream flow and perpendicular to it was malytically determined for an
incompressible flow and a compressible flow with Prandtl nuniberequal
to 1.

The boundary-layer thickness was shown to be proportional to the
sgyare root of the distance from the leading edge of the @ate when
measured along the streamline of the main-stream flow. The deflection
of the boundary-layer flow at the plate surface from the direction of

. a circular streamline in the main flow was shown to vary directly with
the turning. With increase in the Mach number of the main-stream flow,
both the

The

boundary-layer thickness and the deflection increased.

INIRODUC!KIOIT

relative lack of theories explaining the behavior of boundary
layer when a lateral curvature of the main-stream flow exists has been
especially apparent in the application of aerodynamics to the design of
turbomachinery. The development of the boundary layer in such cases is
strongly influenced by the corresponding normal pressure gradient toward
the center of curvature, giving rise to a component of “secondary flow”
in the boundary layer. For the laminar case, most of the published work
has been restricted to yawed cylinders, wings, and cones (references 1
to 4). One notable exception of direct application to the design of
compressors aud turbines is reference 5, wherein the boundary layer on a
rotating blade is smalyzed. For the turbulent case, a general but
ap~roximate solution of the momentum-integral equations based on an
assumed velocity distribution and friction law is obtained in refer-

. ence 6.

.. . — -.—



2 lYACATN 2658

“

Aside from the conventionalboundary-layer approach to this prob-
lem, a number of investigators (references7 to 9) have obtained solu-
tions for secondary flow arising from flows of varying total pressure
or varying enthalpyby neglecting the influence of viscosity but admitt-
ing the existence of vorticity. Although such procedure obviously does
not permit satisfaction of all.the boundary conditions (because the
order of the general differential equations for the flow is reduced),
the results so obtained give a fair check with the experimental data,
except in the regions close to the wall. Thus the indications are that,
while it is possible to obtain a fair picture of three-dimensional flows
in the preceding cases by neglecting viscosity, such procedures are
inadmissiblewhere thin boundary layers exist.

The object’ofthis investigation,whichwas conductedat the ITACA
Lewis laboratory, is to solve a case somewhat analogous to that of
references 7 to 9 in regsrd to main-flow orientationwhil~ retaining the
usual Prsmdtl boundary-layer assumptions, and thus to demonstrate the
influence of viscosity and compressibility on the secondary flow in
relatively thin boundary layers.

To this end, the main flow outside the boundary layer is assumed to
follow concentric circular streamlines id planes parallel to a semi-
infinite flat plate andtobe uniform in a direction perpendicular to
the plate. Tne edge of the~la.te is placed so as to coincide with a
radial line through the axis of the main flow (fig. 1). It is assumed,
of course, that in the establishedmain-stream flow the effect of vis-
cosity is negligible. In the simplification of the equations for the
flow, it was found convenient to follow the procedure first usedby
Moore (reference4).

Although the solution is primarily of theoretical interest, it may
have some direct bearing on the understanding of secondary flows over a
portion of the huh between the compressor guide vanes where the boundary
layer is probably still thin and laminar, and where the main flow under-
goes relatively little turning, often along a circular path. Here again
the smalysis would pro%ablybe applicable only in regions where boundary-
Iayer flows from the blade surfaces and other “wall effects” were not
influential.

“
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BASIC EQUATIONS

3

The following equations describe the motion of a compressible vis-
cous fluid in vector form (reference 10):

Conservation of mass

Conservation of mamentum

P%= [1PF-VP+PS7%+*W(V=Z) +2 (W)*V i+ (vlJ)x&xti)-

g (Va(vd

Conservation of energy

P ~+~(v”a) rl=A+VO (kV)T

.

where the dissipation function

L -1

is given by

(2)

(3)

Equation of state

P = PRT (4)

(All syuibolsare defined in the appendix.)

When dealing with problems involving a lateral curvature of the
potential flow it is convenient to use an orthogonal coordinate system
illustrated in figure 2. This system is characterizedby a fixed refer-
ence axis x of arbitrary curvature c = c(x) and is related to a
Cartesian system Xi as follows:

.



l!TACATN 2658

“

where

%1 =
f

Cospax+zsinp
o

%=Y

‘3
J

= constant + z cos ~ - Sinpdx
o

d~
c =—

ax

. P = f(x)

The elements of length at (x,y,z) in
ing cooritbxatesare

hldx h2dy

the &Lrection

h3dz

(5)

of the increas-

and their values may be obtained by use of equations (5) as

hl = (1 + CZ)

h2=l

h3=l

The transformation of equations (1), (2), and (3) from the Cartesian
system to the orthogonal system is readily obtainableby use of the
expressions for the elements of length (see, for instance, reference Il.
or 12). When the y-axis is assumed yerpendkular to the surface over
which the flow tskes place and the usual Prsndtl assumptions about the “
order of magnitude of various terms are made, the equations (1), (2),
and (3) take the following form for steady flow in a boundary layer where
equations (6), (7), and (8) correspond to eqpations (1), (2), snd (3),
respectivelfi

-. —-——
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a
[ ] +%[o+cz)w]}=o ,6,~ (Pd + $ (1 + CZ)PV

,

N
w
x’

.

.
(7a)

( u aw aw
+’%+W ) ()

ap a b
X-A #’=-

‘l+CZW x+= ~w
(7b)

Concomitant with (7a) and (7b) is the result that ap
W is of order of

magnitude 5 & O.

(8)

The equation of state (4) remains unchanged.

the nature of the problem under considerateion, several
in the preceding equtions can be made. First, the fixed
x fill be chosen to coincide with a streamline of the

Because of
simplifications
reference axis
main-stream flow where these streamlines sre assumed to be arcs of con-
centric circles in planes parallel to a semi-infiniteflat plate (see
fig. 1). This flat plate is oriented so that its leading edge is orthog-
onal to the reference axis Xj hence the leading edge can be defined by
X=o, y=o. Secondly, if the velocity of the fluid in the main stream
is desi~ted u1, it follows that U1 = constant along sny given stream-
line; that is, U1 = Ul(z).

It also follows from the nature of the prescribed main-stresm flow
that the pressure gradient in the x-direction and outside the boundary
layer is identically zero. In view of the order of magnitude of ap/ay,
the same pressure prevails in the boundary layer as in the main flow,
and consequently (where the subscript indicates partial differentiation)

Px=o (9)

. ——— —— ——_______ .————— . ..——
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In addition, for flow with circular streamlines it may%e shmm
that

32.=(*) w,’

where

The %oundary conditions on equations (6) and (7) are

U(x,cxr,z) = U1(Z)

W(x,co,z)= o

U(x,o,z) =’W(X,O,Z) = V(xyoyz) = o

X>()

and at the leading edge

U(o,y,z) =Ul

W(o,y,z) = V(o,y,z) = o

where

(lo)

(u)

For equation (8), usually two boundary conditionson temperature are
usedby defining its value at y = O and y+% For the case under
consideration,however, it will be necessary to define temperature only
at y=O.

SOLUTION OF EQUATIONS

Application of Vector Potential Concept

In order to satisfy the equation of continuity (6) andto eliminate
one dependent vai?iablefrom equations (7), the concept of a vector poten-
tial is aployed (see reference 4). To this end, two functions ~ and
~ are defined, where

—- —— .—
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Pu s *Y

(1 + CZ)PW =Cpy
$

(1 + Cz)p’vs .(VX

It maybe verified by direct substitution
tion (6) that equation (6) is identically

Substitution of equations (9), (10),
and (7b) yields

+ Cpz) 1 (12)

7

of equations (12) into equa-
satisfied.

and (12) into equations (7a)

[u]+
=(l+CZ) ~-2y

‘y[+=-i+ R+3. - ‘Vx+’z)[*IY+*Y’2 -
VY2

(1 +CCZ)2 7 = [()]- cPpf -!-pl ‘f&

QYY
(m)

Incompressible Case

The solution for the incompressible flow (p = constant) willbe
presented first. Yor this case it is necessary to consider only equa- .
tions (13) in the boundary layer; the energy eqyation need not be used.

In accordance with the usual procedure in the solution of incom-
pressible boundary-layer flows, the following mibstitutions for the
variables are employed

. . —--—. .———— _ — .—..—.—..——___ ___ .._._ .
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(14)

The following system of equations is oblxainedby substituting
expressions (14) along with their appropriate partial derivatives into
equations (13) (note that p/P = V):

(CX)2G“G
[
:+ (l+ZC) % =0

2cu~ &z 1 (Mb)

It is interesting to note that setting

u~ = u~,o(l + Zc)n (16)

in (15a) and (15b) reduces these equations,

(
(CX)2WFf (n+l) + (CX)2F”G ~+

()n(cx)2 (G’)2 - <CX)2 G“G ~+ n +F’G’ -

———— — —-—

respectively, to the forms

)

FF?t
n -—-

2
Fff? so (17a)

FfJ!,
~+(1-F’2)-G’~’= O

(17b)

.

.—.——— ————-————
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Letting n = -1 in equation (16) gives the expression for the velocity
in the classical irrotational vortex flow, whereas letting n= 1
yields the expression for a special case of “wheel-type” flow.

Now F and G and their derivatives are assumed of order of mag-
nitude of unity, while (cx)2<< 1. It is seen that cx is the total
turning of the flow outside the boundary layer, and%ecause of the fore-
going restrictionistmust remain small. It is further assumed.that

(-a is of the order of magnitude of unity (which shouldbe the

case for most flows of interest and is evidenced in partby equation (16)).
Neglecting all terms of the order of (CX)2 in equations (15) and (17)
reduces these equations to the following two total differential equa-
tions:

(18a)
~,,+~!t!=o

2F1G1 - FG” - 2G’” +2[1- (F’)2] =0 (18b)

and

The correspondingboundary conditions are

}

(19)

Ft .lsndGt=Oas~+m J
l@ations (18) and (19) show that for small turning F is the

usual Blasius function and that eqution (18b) may be solved for G’
(or G) since F is &own. Such solution was obtainedby relaxation
procedure inasmuch as F and its derivatives are given in tabular form
only (cf. reference 13, p. 121), The results from this computation me
presented in figure 3 and table I.

Bounda~-layer thickness. - If the boundary-layer thickness 5 is
defined as the value of y at which u is a certain percentage of U1

(usually over 99 percent), a correspondingvalue for q may be found
from the solution for F where this value of
ConseWently the e~ression for boundary-layer
from eqyations (14) as

——

8 11*= Al t1+’CZ =
‘1

~ is designated v*.
thickness maybe obtained

(20)
●

—.-.-—. _—._ ——— —.— .——. — .—.—.— —....——- - —T— .—.—. -—.-
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or

on

nonilimensionally

NACA TN 2658
“

in terms of the reference length x as

8
-=~” J=’e-;x

(21)

a given streamline, it can be seen from equation (20) that the
bound&y-layer thiclmess varies directly with the sq&me root of X.
For the special case of free vortex flow, equation (20) becomes

(22)

and it follows that for say given x and u1,o, thickness increases in

proportion to (1+ CZ) or that the boundary layer becomes thinner with
an increase in curvature of the flow. The lines of constant thiclmess
are obtainedby considering & tobe a constant in eqyation (22), or

constant

x=(1 + CZ)2

Therefore, the curves of constant 8 are spirals of.lituus; they
shown in figure 4. For more general flows, the lines of constant
boundary-layer thickness are givenby

u~ (constant)
x=

(1+ Zc)

where, of course, U1 is a function of (1 + ZC).

(23) ‘

are

Flow direction at plate surface. - From equations (12) and (14) the
expressions for u and w are

u=ulF’

w = CXUIG:

Therefore, if

N
CA

x’

—.

,

—
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the flow direction at the plate is given

a= arc tan

However, since G’(0) =F’(0) =0,

by

6

-+7G“ 0)
C= CXF,, O

Equation (25) indicates that

inasmuch as

.

The ratio G“(O)/F’’(O)was

‘o,z = ‘To,x

au
‘O,x = E]

y (Y=o)

&
‘O,z= !$+y(Y=o)

U.

(24)

(25)

evaluated numerically to give the result

c= -3.26 CX

It maybe seen, then, that at the plate surface the flow is deflec-
ted from the Urection of the streamline toward the center of curvature
of the main-stresm flow and that this deflection is proportional to the
turning. The lines of constant c are seen from equation (25) tobe
those of constant turning, that is, radial lines (see fig. 4).

Effect of Compressibility
.

Complexity prevents the extension of the previous results to include
the effects of compressibilityin the ssme manner as for the incompres-
sible case. For canpressible flow, a solution canbe obtained only in
the immediate neighborhood of a reference streamline on which the Mach

, ?nmiberhas been specified. However, it is possible to calculate the
Mach numbers on various chosen streamlines in terms of the Mach nwiber
specified on an initial streamline. Solutions can then be found in the
neighborhood of the chosen streamlinesusing the calculatedMach numibers.
To find the boundary-layer flow in any region of interest is therefore
possible.

- . -- - —--.—- --...—. .--. -——— _.. ..— —-———c—.
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Simplificationof energyequation.- Letting 6 =~T and assuming

that the specific heats and Prandtl ?nmiberare constant, the energy
equation canbe written in terms of ~ and ~ as

([()]
*y 2+Uzcp + (1+- Cz)pI$#%ez - (’&+ ~z)ey=* 1 y -Fy

{[i+%]]) (26)

For Prandtl nuniberequal to 1 and zero heat transfer at the plate sur-
face, equation (26) is replacedby

(27)

where Tw is the constsnt temperature of the plate.

Reduction of equations to nondimensional form. - The following
approximate formula (reference 14) is used to represent the relation
between the viscosity audthe temperature:

&.A&
Vl,o %, o

where A is a constant suitably adjusted to

(28)

give the best agreement
with the actual relation over the temperature range considered.

It now becomes convenient to make all physical quantities in the
various eqp.ationsnondimensional. The following system suggested in
reference 4 will be used, all quantities on the left are to be con-
sidered relative to the quantities on the right, which are measured
outside the houndaxy layer snd along the reference Ss x:

U,v,w relative to U1,O

1X,y,z, ~ relative to wl,@/PljOul,O

P relative to pl,o

T relative to u21,~2Cp

N
ul
-1
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P relative tO Pl,@21,0

v,9 relative to Vl,(3A

All subsequent equations will appear in nondimensional
consequence of the use of the nondhensions,l form, equation
becomes

13

form. As a
(13a)

= (1+ Cz) [*(%YIY
equation (13b) becomes

‘JY~i+izijx+* &’)z- (Vx+Q
[*l-

: (4$)2- %2— = -CPIU1
(1 :CZ)2 p 2+ [& (3JY

equation (27) becomes

‘l+{(y+[pa-}=q
and equation (4) will be written

(29)

Transformation of Howarth. - The following transforn@ion of vari-
ables indicated by How~h (reference 15) is now utilized to make the
nondimensional.form of equations (13a) and (13b) similar to the incom-
pressible form of these equations:

.

._ ----- _____ . ___–-—-—–-—— --——-. .-— -- –– .—___________
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.

(30)

As a consequence of trsasformations (30), equation (29), and the
fact that aP/~y is of the order of magmitude 5, equations (13a),
(13b), and (27) become, respectively:

.

(
z~

_%.4Q _
)

1 @+(l.+cz)Ym ’
‘%-Y l:CZ 2 ~1 n,o

(31a)

c.—~y#--##w’ml+CZ 2
9

(31b)

(32)

The ssme procedure as for the incompressibleflow case is now
followed. The similarity variable and correspondingvector potential
components are defined as

-- .- ——.
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~=’&
Y =/iJizzj- F(q)

@= Cx(l + Zc) {~ m)1
By use of these definitions, equations (31) become

(33)

[
(CX)2W 1+Q+4*

1
+(cx)2@P

[
zM2.;-2 1-

(l+ZC) % 1 ijpl

2cu~ ZZ-- -—- F’”=02

F!E!
jj@

(
, M~2)~l - ~,2)- F,,,+-T+ 1+~

[

2–2 J1 + Zc) %(cX) G’
Cul —-~M12dz 1-,Cx,%[;,Qi&si*+

Boundary conditions are the ssme as in equations (19) with
appropriate change in variables; that is

F=m =F=F’=0 at T=O

and

(34a)

1~M12=0

(34b)

the

Once again when terms of the order of magnitude of (CX)2 sre
eliminated under the same type of restrictions as in the incompressible
case, equation (34a) becomes the Blasius equation for ~.

However, it
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may be seen that equation (34b) cannot be solved directly as a total
differential equation in Y stice MI is a ~ction of Z. In fact)

if U1 is

U1 = f(l +

and in the
and may be
tions into

specificallyprescribed as a function of (1 + CZ) (that is,

CZ) where f = 1 when z = O),then MI maybe expressed as

M~,o fL
M12 = ~-1

[ 1-7%2(1-fz) ‘1

(35)

immediate neighborhood

considered a constant.
equation (34b) gives

of the reference axis X, Ml S Ml,()

Incorporating the preceding restric-

F-t@ - gtll - ( y-l M2 )[ –2 11/2~’f+ 1+~ 1,0 1- (F’) =0 (36)

This equation has the solution

(37)

where G! is known from the incompressible case. Curves of F’(ij) for
various values of Ml,O are plotted in fiWe 5.

As mentioned previously, the flow in the neighborhood of stream-
lines other than an initial reference streamlinemaybe calculated in
the same manner by taking the reference axis
and by computing the appropriateMach number
equation (35).

Physical coordinates. -
to obtain values of y as a

Relations (29~,
function of q

It is to be
dimensional

([J {
Y= (x)l/z ij+ ~- (F’ )2

o

along the new streamline
on this streamline from

(30), and (32) maybe used
for a fixed value of x

(38)

recalled, of course, that these coordinates are the non-
form of the true physical coordinates.

Interpretation of results. - From equations (18), (36), and (38),
the effect of compressibilitymay be seen to be twofold, namelv, chamzes
occur in the coordinate y as a function of v and the diffe~&ntial–
equation for G. These changes have a corresponding influence on the
velocity distribution, the boundary-layer thickness, and the flow deflec-
tion at the plate surface.

.

——— -- -——-— -. ..— ———. —— .
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Since

given value
by equation

17

function of ij,for any

with Mach nunber, as shown
1 J‘v(~t)z d--i’- () is a positive

;f ~ the value of y increases
(38). Consequently, the boundary-layer thickness 5

increases with Mach ntier. It-also follows-for-a chosen Mach nuniber
that

thereby indicating that ~/~y increases with Mach nuiber for
? = constant. The same effect is known to exist in two-dimensional
boundary-layer flow.

As far as the flow deflection at the plate surface is concerned,
the changes in the shape of @ (see fig. 5) snd equation (25) indicate
that for a given turning the deflection towsrd the center of the flow
field increases with Mach mxiber. Consequently, larger secondary flows
in the boundary layer are obtained with the increase in Mach ntier.

CONCLUSIONS

The following conclusions were drawn from a theoretical investiga-
tion of boundary-layer flow over a flat plate when the main-stresm flow
outside the boundary layer follows concentric circular streamlines and
the total turning of that flow is small:

1. The profile of the velocity component in the direction of the
flow outside the boundary layer is identical to that existing in two-
tiensional flow over a flat plate.

1
2. The magnitude of the velocity ccmponent in the direction perpen-

dicular to the flow outside the boundary layer and in a plane parsllel
to the plate varies directly with the turning of the main-stream flow.

3. The boundary-layer thiclmess varies with the square root of the
distance along the streamline of the main-stresm flow as measured from
the leading edge of the plate. For the special case of free vortex
flow, the lines of constsmt boundary-layer thickness are spirals of
lituus●

4. The deflection of the flow at the plate surface from the direc-
tion of the main-stresm flow is directly proportional to the turning of
the main-stresm flow. The lines of constant deflection are therefore
radial.

.

-.—— -——-——— .—.—_.. . . .
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5. Both the boundary-layer thickness and the deflection at the
plate surface increase with Mach nuniber. Consequently, larger secondary .
flows in the boundary layer are obtained for higher Mach nwbers.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, November 27, 1951

————
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APPENDIX

The following synibolsare used

.

lx

8’J

/

A

%

c

v

E

T

hi

k

M

P

R

Re

T

u,V,v

X,Y,z

x,y,z

a

19

- SYMBOLS

in this report:

constant in viscosity-tenq?erature relation

specific heat at constant pressure process

curvature of x-sxis, d~jdx

Eulerisn derivative

vector differential

energy

operator

functions related to components of vector potential

inertial field force

factor used in transformation of coordinates (i = 1, 2, 3)

thermal conductivity

Mach number

pressure

velocity vector

gas constant

Reynolds nuriberbased on x, (ulx/~)

temperature

velocity compcments in curvilinear coordinate system

coordinates definedby equation (30)

curvilinear coordinates

bountbry-layer deflection angle measured from direction of
flow at plate smface to direction of flow outside
boundary layer

_—.—._-—________________ _. — ..———. . . .——_.______ _ . . .
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0, q
Y,*
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%

Subscripts:

1

0

NACA ‘IN2658
.

angle between Xl-axis and tsmgent to x-axis

ratio of specific heats

boundary-layer thiclmess

measure of boundary-layer
tan a

similarity variables

valueof ~ at Y=5

enthalpy, ~T

dissipation function

absolute viscosity

kinematic viscosity, p/p

density

●

deflection near plate surface,

shear stress at wall in x- and z-directions, respectively

components of vector potential

Cartesian coordinates (i = 1, 2, 3)

outside the boundary

on reference axis x

w at plate surface

layer

I

.

All other subscripts indicate partial differentiation.

Superscript primes indicate total differentiation.
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TABLE I - VALUES OF G’(q)

o
.2
.4
.6
.8

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

o
-.198
-.356
-.476
-.561
-.613
-.638
-.638
-.619
-.585
-.539
-.4%6
-.430
-.372
-.316
-.264
-.216

n

3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4

G’(d

-0.174
-.137
-.106
-.081
-.060
-.044
-.032
-.022
-.015
-.010
-.006
-.004
-.002
-.001 “
-.001
-.000

v

.
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Figure1. -F1OWoverplatesurfaceshowingstreamlinesoutsideboundsxylayer,
orientationof axes,andorientationofvelocitycomponentswithinboundary
layer.

——..— — -. . .———— .. ————= —--- -———



4P

xl
b ~

J’(constant) + z cos ~ - x sin ~ dx
1 0

x

Figure 2. - Transformation from Cartesian
to curvilinear coordinates

,

T

coordinates xi
X,y,z.
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Figure 4. -
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Lines’of constant 5 and e
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